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Successive Bifurcations Leading to Stochastic Behavior 
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A model of interacting normal modes in a nonlinear, dissipative system is 
constructed in order to analyze speculations by Ruelle and Takens. The 
first bifurcation leads to a periodic state. The second bifurcation leads to 
phaselocking, if the first mode is sufficiently energetic. A third bifurcation 
leads to stochastic behavior. Possible relevance of these phenomena for 
physical systems is discussed. 
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nonper iod ic  ; normal  mode  ; quas iper iod ic  ; s tochast ic  ; tu rbu lence.  

1 .  I N T R O D U C T I O N  

Ruelle and Takens (1) have speculated that certain fluid mechanical systems, 
such as Couette flow, may enter stochastic states through a small number of  
bifurcations. At each bifurcation, a new frequency appears in the flow. How- 
ever, nonlinear interactions between three or four normal modes are supposed 
to create nonperiodic time dependence. Ruelle and Takens suggest that the 
dynamical variables of the system will be "mixing,"  meaning that their time 
correlation functions will go to zero as the time displacement goes to infinity. 
Actually, the more common usage of the term "mix ing"  refers to a somewhat 
more general property of  measure-preserving systems. (2) However, in this 
paper, "mix ing"  will be used as shorthand for variables whose autocorrela- 
tion functions go to zero as the time displacement approaches infinity. 

Unfortunately, Ruelle and Takens offer no examples of  the above 
behavior. Furthermore, although their arguments use topological ideas to 
suggest "gener ic"  behavior, it is questionable whether mechanical systems 
happen to lie within such "generic classes." However, the basic idea that very 
simple mathematical systems can be mixing is correct. For  example, consider 
the so-called "c-systems." (2) The c-systems are measure-preserving systems 
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in which all orbits are highly unstable. It can be rigorously proved (2~ that the 
orbital instability implies that the systems are mixing. 

The c-systems are more than mathematical abstractions. Orszag (3~ has 
found an example of a c-system which consists of five nonlinearly coupled 
degrees of freedom. Using extremely accurate numerical techniques, Orszag 
found that all orbits of the system were unstable, and that the autocorrelation 
function of each of the five modes goes to zero. 

Unfortunately, very little is known about nonlinear dissipative systems. 
Lorenz (4) found a dissipative system, consisting of three nonlinearly coupled 
degrees of freedom, which exhibits highly aperiodic time dependence. The 
orbits of the system are attracted onto a complicated surface on which all 
orbits are highly unstable. Unpublished calculations by the author, using 
high-order predictor-corrector schemes, show that the Lorenz system is 
mixing. 

The Lorenz system does not conform to the Ruelle-Takens picture. 
Ruelle and Takens deal with systems that exhibit " forward"  bifurcations, 
which are nonhysteretic. The Lorenz system exhibits a "backward," or 
subcritical, bifurcation, which exhibitis hysteresis. 

In a previous paper, (5~ McLaughlin and Martin made a numerical study 
of a model of thermal convection in a fluid with low Prandtl number in 
Rayleigh-Benard geometry with free-slip boundaries. The Prandtl number (r 
is defined in terms of the kinematic viscosity v and the thermal diffusivity 
K by the expression 

- ~ /~  ( l )  

The model system was obtained by making a severe spectral truncation of the 
Boussinesq equations. Despite the truncation, the system still exhibited 
behavior roughly similar to that found experimentally by Willis and Dear- 
dorff (6> and Ahlers. (v~ The different regimes of the model are defined in terms 
of the Rayleigh number R, 

R -- g ~ H a A T / K v  (2) 

In Eq. (2), g is the acceleration of gravity, E is the coefficient of thermal 
expansion, H is the thickness of the fluid layer, and AT is the difference 
between the temperatures of the lower and upper surfaces of the fluid layer. 

The model yields convective motion in the form of straight rolls for 
Rayleigh numbers exceeding a critical value Re, 

Rc = 657 (3) 

The next transition occurs at R = 1.24Rc, where the straight rolls become 
unstable to wavy rolls. The motion is strictly periodic for an interval of 
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Rayleigh numbers above the second threshold. At R = 1.6Re, an instability 
to highly aperiodic fluctuations was found. In the interval between R = 
1.24Rc and 1.6R~, there is still another bifurcation in which another wave- 
length starts to draw energy. This wavelength is not driven by the other modes 
(see Section 2), so that its Fourier components are strictly zero below the 
bifurcation. The fact that the second bifurcation leads to strictly periodic 
motion suggests that a phaselocking mechanism is at work. 

It is not clear whether three or four bifurcations occur before the onset 
of aperiodicity seen at R = 1.6R~. However, it was found that if the fourth 
spatial harmonics were dropped from the model, the system exhibited strictly 
periodic behavior at all Rayleigh numbers. This suggested that the ideas of 
Ruelle and Takens might apply to this model of convection. 

There were several problems with the work on the convection model. 
First, the model was very crude. It is clearly desirable to study a more realistic 
model of  low-Prandtl-number convection. The author is currently under- 
taking this work, and the results will be reported elsewhere. 

The single time step scheme used to integrate the equations was another 
weakness of  the computations. This procedure has low accuracy, and it might 
be argued that the nonperiodicity found was produced by roundoff. This 
problem is amplified by the fact that each wave was represented by eight 
Fourier components. It is hoped that this resolution makes the model 
qualitatively realistic. However, it also raises the possibility that the noisy 
behavior was simply due to the large number of degrees of freedom (39) in 
the model. 

In order to circumvent the above difficulties, a model will be exhibited 
in which each wave is represented by a single complex function of time. The 
waves will be coupled by a set of nonlinear ordinary differential equations, 
which are suggested by the convection equations in Ref. 5. The equations are 
then integrated, using highly accurate predictor-corrector schemes, and are 
found to exhibit behavior which conforms well with the Ruelle-Takens pic- 
ture. In particular, the model exhibits phaselocking after two bifurcations 
and stochastic behavior after three bifurcations provided that a sufficient 
number of nonlinear couplings are present in the model. 

2. R E V I E W  OF C O N V E C T I O N  M O D E L  

Let us take the x and y axes to lie in a plane parallel to the surfaces of 
the convection layer. The z axis will be chosen so that the z coordinate of  the 
lower surface is zero. It is possible to find solutions of the Boussinesq equa- 
tions with straight rolls oriented parallel to any horizontal direction. For 
convenience, this direction will be chosen to be parallel to the x axis. 

It is possible to convert the Boussinesq equations into an infinite set of 
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coupled, nonlinear ordinary differential equations by the following substi- 
tutions: 

V(r, t) = i ~ V(I, m, n, t)Fz,~,(x, y, z) (4) 
I,m,r~ 

l + n = e v o n  

0(r, t) = i ~ (1, m, n, t)F,m,(X, y, z) (5) 
l,m,?l, 

[ § 

F, mn(X, y, z) = exp[i(kxlx + kymy + k~nz)] (6) 

Kx = 2rr/ax, Ky =- 2~r/)ty, g~ =- 7r/H (7) 

The solutions in Eqs. (4) and (5) impose periodic boundary conditions over 
distances Ax and Au in the x and y directions. It is a property of the Boussinesq 
equations that solutions with l + n = even for all Fourier components can 
be found. Busse~8> has shown that these are the physically interesting solutions 
in the transition to time dependence for low-Prandtl-number fluids. 

The values of the Fourier components cannot be chosen arbitrarily 
without violating either the reality of the velocity and temperature fields or 
the boundary conditions at the two surfaces of the fluid layer. The fields will 
be real if the following condition is imposed: 

V ( - / ,  - m ,  - n ,  t) --- -V*( / ,  m, n, t) (8) 

0 ( - I ,  - m ,  - n ,  t) = - 0 " ( l ,  m, n, t) (9) 

The asterisks in Eqs. (8) and (9) denote complex conjugation. 
If  free-slip boundary conditions are imposed, the following symmetries 

must be imposed on the Fourier components: 

U(I, m, - n ,  t) = U(I, m, n, t) (10) 

V(l, m, - n ,  t) = V(I, m, n, t) (11) 

W(I, m, - n ,  t) = - W(I, m, n, t) (12) 

0(1, m , - n ,  t) = -Off ,  rn, n, t) (13) 

Let us consider the solution corresponding to straight convection rolls 
parallel to the x axis. In this case, rn is zero, there is no y component of velocity 
and Eqs. (8)-(13) imply the following symmetries: 

U ( - l ,  o, n, t )  = - u*( l ,  o, n, t) 

W ( - I ,  O, n, t) = W*(I, O, n, t) 

0( -1 ,  O, n, t) = 0"(I, O, n, t) 

(14) 

(15) 

(16) 
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Inspection of the Boussinesq equations (see Ref. 5) reveals that the origin of 
coordinates can be chosen so that the Fourier components of the roll are real. 
In this case, Eqs. (14)-(16) can be replaced by the following relations: 

U ( - I ,  O, n, t )  = - U(I, 0, n, t) (17) 

W ( - l ,  O, n, t)  = W(I, O, n, t)  (18) 

O ( - l ,  0, n, t) = 0(l, O, n, t )  (19) 

Busse (8~ identified the mode of instability that leads to the wavy rolls. 
The source of energy for the waves is the kinetic energy of the straight rolls. 
This energy is released through a shear instability of the rolls. This mechanism 
manifests itself in the fact that the wave fields have the symmetries of the x 
derivatives of the corresponding roll fields. Let us denote the wave fields by 
the subscript W: 

U w ( - l ,  m, n, t)  = Uw(l, m,  n, t )  (20) 

V w ( - l ,  m,  n, t)  = - Vw(l, m, n, t)  (21) 

W w ( - l ,  m, n, t )  = - Ww(l,  m, n, t)  (22) 

O w ( - l ,  m, n, t)  = -Ow(l ,  m, n, t) (23) 

Traveling waves can be specified by the following conditions: 

Uw(l, - m ,  n, t) = -- Uw*(I, m, n, t) (24) 

V w ( l , - - m ,  n, t) = Vw*(l, m, n, t )  (25) 

Ww(l, - m ,  n, t)  = - Ww*(l,  m, n, t)  (26) 

Ore( l , -m ,  n, t) = -Ow*( l ,  m, n, t)  (27) 

Let us define all Fourier components having the symmetry of the roll field 
to be the background field, and denote them by the subscript B: 

UB(--l ,  m,  n, t )  = -- UB(I, m, n, t)  (28) 

V n ( - l ,  m,  n, t)  = Vn(I, rn, n, t) (29) 

We(- / ,  m, n, t) = Wn(/, m, n, t) (30) 

0n(-/ ,  m, n, t) = 0n(/, m, n, t) (31) 

UB(I, - -m ,  n, t) = UB*(I, m,  n, t)  (32) 

VB(I, - -m ,  n, t) = -- VB*(I, m, n, t) (33) 

WB(I, - -m ,  n, t)  = Wn*(l, m, n, t) (34) 

0B(/, --m, n, t) = 0B*(/, m, n, t) (35) 
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Letting ~B and ~w represent background and wave Fourier components, the 
nonlinear and linear terms of the Boussinesq equations are of the following 
form: 

d4,~/dt = ,kBckB + ~w~w + q~B (36) 

dq~w/dt = 4Bq~w + q~w (37) 

Thus, for example, it is possible to find exact solutions of the Boussinesq 
equations in the form of Eqs. (4) and (5) with wave Fourier components hav- 
ing odd values of m and background Fourier components having only even 
values of m. 

3. THE  M O D E L  

The convection equations will serve as a guide in constructing a model 
exhibiting successive bifurcations. Let us assume that the fields can be split 
into "wave" and "background" fields. Each wave will be represented by a 
single complex function of time, and a single space dimension will be retained. 
We have 

VB(X, t) = ~, Vs(m, t)e 'kmx (38) 
m 

Vw(x, t) = ~ Vw(m, t)e 'kmx (39) 
m 

The following conditions guarantee that the physical space fields will be real, 
and that the waves will be traveling instead of standing (standing waves could 
be imposed by requiring the Fourier components to be real): 

VB(--m, t) = VB*(m, t) (40) 

Vw(-m,  t) = Ww*(m, t) (41) 

By analogy with Eqs. (36) and (37), let us study the following evolution 
equations: 

dVw(m)/dt = ~ Vw(q)VB(m - q) - iwmVw(m) (42) 
q 

dVB(m)/dt = ~ Vw(q)Vw(m - q) + Vs(q)VB(m - q) - vmVB(m) (43) 
q 

The parameters corn will be taken to be complex numbers, and the 
parameters v,, will be chosen to be real and positive. Thus, the Vw(m) are 
oscillatory modes, which can be either growing or decaying, depending on the 
sign of OJm ~, in the linearized equations. The VB(m) are passive, nonoscillatory 
modes. 
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If  the amplitudes of all the modes are infinitesimal, the stability of each 
wave is determined by the imaginary part of o,m, oJm ~. For example, suppose 
that only oJ1 i is greater than zero. In that case, Vw(1) will acquire a finite size, 
and will oscillate at roughly ~ol r. (The frequency is modified by the nonlinear 
terms.) Furthermore, Vw(m) for m odd and V~(n) for n even will be non- 
linearly driven by the first mode. This is easily verified either numerically or 
by a perturbation expansion in o~ i. 

Were it not for the primary mode, Vw(2) would acquire a finite size when 
o~2 ~ became positive. However, for the choice of Vr~ to be used in this paper [see 
Eqs. (63) and (64)], the distortions produced on the background field by the 
primary mode have the effect of suppressing Vw(2). This behavior can be 
studied analytically for small primary amplitudes. To first order in oJ~ ~, the 
primary mode is determined by the following expressions: 

Vw(1) = l Vw(1)[ exp( -  i ~ t )  (44) 

= co~ (45) l Vw(1)[2 (1/%) - {%/[vz 2 + 4(oJlr)2]} 

~1--o,~r + l v~(1)J2[~ +-v2 2 (~ (o,r) 2 ] (46) 

To first order in oJ~ ~, only two background modes, VB(0) and V8(2), are 
nonzero: 

VB(O) = ] Vw(1)[Z/Vo (47) 

VB(2) = [Vw(1)12/(% - 2iw~9 (48) 

To second order in oJ1 ~, the linearized equations for Vw(2) are as follows: 

dVw(Z)/dt = [-VB(O) - ioJ2]Vw(2) + VB(1)Vw(1) + VB(3)Vw*(1) (49) 

dVB(1)/dt = 2Vw(Z)Vw*(1) + 2Vw(3)Vw*(2) + 2VB(2)VB*(1) + 2VB(0)VB(1) 

+ 2VB(3)VB*(2) -- v2V,(1) (50) 

dV~(3)/dt = 2Vw(1)Vw(2) + 2V,(1)V,(2) + 2VB(0)VB(3) -- %VB(3) (51) 

To first order in o~(, the threshold for the second mode is given by the 
following expression: 

(~o~ - ~ )~  + ,,~ (o~2~ + ~o~)~ + ~ 

The time dependence of the second mode above its threshold depends 
on the strength of the primary mode. This can be seen by examining Eqs. 
(49)-(51). If  the equations are expanded to second order in ~o~ ~, an equation 
of the following form is obtained: 

dVw(2)/dt = [ - i  o J2 +/31Vw(1)[ 2 + )'l Vw(1)[4lVw(2) + b[Vw(1)]4Vw*(2) (53) 



314 John McLaughlin 

The presence of the last term in Eq. (53) is very important. If  the amplitude 
of Vw(1) is very small, all powers of Vw(1) can be dropped and the solution 
of Eq. (53) is simply 

Vw(2) = A exp( -  ioJ2t) (54) 

The exponential growth of this solution will be saturated by nonlinear terms 
in A. 

If  Vw(1) is finite, the solution in Eq. (54) will be modified by the addition 
of sum and difference frequencies. To second order in col ~, the solution will 
be of the following form: 

Vw(2) = A exp(-i~o2t) + B exp[-i(4f2a - co~)t] (55) 

Such solutions have discrete frequency spectra, and are known as quasi- 
periodic functions. ~9~ It is easily verified that quasiperiodic functions can never 
be mixing, tg~ 

Above a certain threshold in I Vw(1)l, the linearized equations for Vw(2) 
have another solution. This is a phase-locked solution in which Vw(2) 
oscillates at exactly twice the frequency of Vw(1): 

Vw(2) = A exp[(-2is + f22~)t] (56) 

A = IA[ exp(i~) (57) 

Substituting Eqs. (56) and (57) into Eq. (53), we obtain the following pair of 
equations for f22 i and q~: 

o 2' - =/3'1V (l)l 2 + I ' - v sin(Z4,) + 3 ~ cos(2#,)] (58) 

~ 2 ' =  o~2 ~ + 13'lVw(1)[ 2 + [Vw(1)I4[7 ' + 3" cos(2~) + 8 ~ sin(2q~)] (59) 

Equation (58) can be solved for cos(2~). To leading order in oJ1 ~, 

cos(2~) = ~ - -  2~,; m 131 ivw(1)l, ~_ - [[312 - (oJ2' - 2oJ~)=] 1'2} (60) 

A phase-locked solution can only exist for I Vw(1)l large enough that the 
cosine lies between - 1 and 1. We have 

IVw(1)l' >/ I(~ - 2o~,'){3' - [1312 - (o~" - 2,o~02]~'~}1 (61) 

Note that if co2' is very close to 2~oz', phaselocking occurs at very small values 
of [Vw(1)]. Numerical integration reveals that the phase-locked solution is 
the only stable solution of the model soon, if not immediately, after its appear- 
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ance for the parameter choices of  Section 5. The motion of the system is 
found to be exactly periodic with one period. 

It seems plausible that the above mechanism may have produced the 
exact periodicity found after the second bifurcation in Ref. 5. Ruelle and 
Takens (1) also argue for phaselocking by applying Peixoto's theorem. 

4. N U M E R I C A L  T E C H N I Q U E S  

At this stage, it is convenient to discuss the numerical techniques used to 
integrate the model equations. Since the solutions to be discussed in the next 
section appeared to be stochastic, it was desirable to determine whether this 
behavior was due to roundoff error, truncation error in the integration scheme, 
or was a property of the true solutions of the equations. To this end, a variety 
of  high-order predictor-corrector schemes were used to integrate the equa- 
tions. These schemes used the Adams-Bashforth predictor and Adams- 
Moulton corrector. ~1~ The most accurate solutions were computed with the 
ninth-order (PECE) scheme in double precision (12 decimal places). 

It must be pointed out that even the most accurate scheme does not yield 
accurate solutions over the integration times used in the calculation of 
correlation functions. This was checked by changing the initial conditions 
by one part in 1012 on two otherwise identical runs. The resulting orbits were 
identical to six decimal places over at least the first eight cycles of the first 
mode. However, when the same procedure was used on the long correlation 
function runs, the final values of  the variables differed. Thus, it might be 
argued that the stochastic behavior, to be reported in the next section, was 
generated by roundoff. This is unlikely for two reasons. First, even over 
the time segments where the integration is accurate to six decimal places, the 
solutions exhibit the same unpredictability. The second reason is that the 
correlation functions changed by a statistically insignificant amount when 
the "no i se"  level was reduced by a factor 106. This was checked by running 
the same calculation with fourth- and ninth-order schemes (both in double 
precision). Using the error estimates in Ref. 10, it was found that the error 
produced by the ninth-order scheme was lower by a factor 106 than that of 
the four-order scheme. If  it is assumed that the computational errors are 
responsible for the stochastic behavior, the correlation time should increase 
significantly when the errors are reduced by a factor 106. This was not the 
case. The correlation functions changed by an amount less than the statistical 
uncertainty produced by the finite length of the integration domain (,~ 5% 
of  the mean squares for the runs in question). 

Finally, all of  the calculations were performed with a time step At = 
0.01. This step size is roughly 0.570 of  the cycle length for the fastest active 
mode in any of  the calculations. 
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5. N O N P E R I O D I C  SOLUTIONS 

After the second bifurcation, in which the even modes acquire nonzero 
values, all the modes are nonzero. This makes it more difficult to determine 
the location of subsequent bifurcations. However, the task of locating the 
third bifurcation is made easier if one works in the regime of phase-locked 
solutions. As o~3 ~ is increased, a value is eventually reached where signs of  
aperiodicity begin to appear. The nonperiodicity is small at first in the sense 
that it occurs over time scales which are long compared to the periods of the 
three active modes. As 093 i is increased further, the nonperiodicity becomes 
more pronounced until it appears impossible to predict the motion even one 
"cyc le"  ahead. 

In all of  the calculations to be discussed, the real parts of the modal 
frequencies had the following values: 

oJ~ T -= 0.2 + 0.8n (62) 

The damping of the background field was chosen as follows: 

v o = 1 (63) 

v~ = n 2, n >/ 1 (64) 

The value of  oJ1 ~ was set equal to unity, 

r  - 1 (65) 

Finally, the co, ~ for n > 4 were calculated from ~%~ by the following rule: 

oJ, ~ = ~o4 ~ - 2(n - 4), n > 4 (66) 

This ensured that the high-lying modes did not produce additional bifurca- 
tions. 

I t  was found that the second bifurcation did not occur until r ~ was 
nearly unity. When oJ2 ~ was set equal to 1.4, Vw(2) and Vw(1) had roughly 
the same magnitude in the periodic regime. The first signs of  nonperiodicity 
appear at around r ~ = 1.6. It  seems that the transition is sharp in the sense 
that  nonperiodicity develops through a forward bifurcation as oJ3 ~ is increased. 
However, the transition is gradual in the sense that the correlation time goes 
to infinity as the bifurcation point is approached from above. 

In order to determine whether the time dependence was quasiperiodic 
(discrete frequency spectrum) or nonperiodic (continuous frequency spectrum), 
the correlation functions of  the modes were computed. For example, when 
~oa ~ = 2, r ~ = 0, and the system is truncated to m ~< 12, the orbits of  the 
variables are highly unpredictable. The autocorrelation functions of  the real 
parts of  Vw(1) and Vw(2) are shown in Figs. 1 and 2. The integrals were 
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1,0 

.75  

. 5 0  

- .50 
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Fig.  1. A u t o c o r r e l a t i o n  f u n c t i o n  o f  the  real  part  o f  Vw(1) [Vw~(1)]. m ~ 12. coz ~ = 1, 
~2 ~ = 1.4, o~a t = 2 .0 ,  oJ4 ~ = O. 

evaluated using a time range of 1500. Thus, roughly 250 cycles of Vw(1) were 
included in the domain of integration. The fact that the autocorrelation func- 
tion of Vw(1) does not go to zero is due to the finite domain of integration, 
as will be shown later. 

Note that the autocorrelation function of Vw(2) decays much more slowly 

L5C 

I.OC 

10 -I 

.75 

.5C 

.25 

Fig.  2. M a x i m a  o f  the a u t o c o r r e l a t i o n  f u n c t i o n  o f  Vw~(2). m ~< 12. coz ~ = 1, ~oz ~ = 1.4,  
~o3 ~ = 2.0,  oJ 4' = 0. 
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- .50  

- I . 0 0  

J 

-2.0% ~ ~ ~ ,~ I~ ,~ ;, z'~ 2'~ 
Fig. 3. Autocorrelation function of Vwr(1). m ~< 4. ~ol ~= 1, oJz ~=  1.4, ~oa*= 1.8, 

c o 4  ~ = - 0 . 2 .  

t h a n  the  others .  Th i s  is p r o b a b l y  a pecu l i a r i ty  o f  the  model .  I n s p e c t i o n  o f  the  

t ime  d e p e n d e n c e  of  Vw(2) shows that ,  a l t h o u g h  the  succeeding  m a x i m a  show 
grea t  v a r i a t i o n  a n d  unpred ic tab i l i ty ,  the  cycle lengths  are a lmos t  c o n s t a n t  

( ~  3.2). Th i s  will  be  d iscussed in  m o r e  deta i l  later .  

3.0 

2.S 

iO ~I Z.OL5 

I.O 

,5 

0 

Fig. 4. Maxima of the autocorrelation function of Vw'(2). m ~< 4. col ~ = 1, ~o2 ~ = 1.4, 
oJa~ = 1.8, a,4 ~ = -0 .2 .  
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.08 
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.04 
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Fig. 5. Maxima of the autocorrelation function of Vwr(1). m ~ 3. col ~ = 1, ~2 ~ = 1.4, 
~oa ~ = 1.8. 

I n  o r d e r  to  d e t e r m i n e  t h e  effects  o f  t r u n c a t i o n  a n d  n o n l i n e a r  i n t e r a c t i o n s ,  

t h e  m o d e l  was  t r u n c a t e d  to  m ~< 4. W h e n  0~1 ~ = 1 a n d  o~2 ~ = 1.4, n o n -  

p e r i o d i c i t y  was  f o u n d  to  d e v e l o p  a t  s o m e w h a t  s m a l l e r  v a l u e s  o f  oJ3 ~. F i g u r e s  

3 a n d  4 s h o w  t h e  a u t o c o r r e l a t i o n  f u n c t i o n s  o f  Vw~(1) a n d  Vw'(2) f o r  oJ3 ~ = 

7 F 
.6 

Fig. 6. Maxima of the autocorrelation function of Vw'(2). m ~< 3. o~1 ~ = 1, ~o2 ~ = 1.4, 
o~a ~ = 1 . 8 .  
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Fig. 7. M a x i m a  of  the  au tocor re l a t ion  func t ion  o f  Vw'(1). m ~< 4. oil ~ = 1, o~2 ~ = 1.2, 
co3 i = 1.8, oJ4 ~ = - 0 . 2 .  

1.8 a n d  o~4 ~ = - - 0 . 2 .  T h e  c a l c u l a t i o n s  w e r e  r e p e a t e d  w i t h  m ~< 3. T h e  r e s u l t s  

a r e  s h o w n  i n  F i g s .  5 a n d  6. N o t e  t h a t  s t r o n g  c o r r e l a t i o n s  r e c u r  o v e r  l o n g  

t i m e s  i n  t h i s  c a s e .  
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Fig. 8. M a x i m a  of  the  au tocor re la t ion  func t ion  o f  Vw'(2). m ~< 4. ~ol ~ = 1, oJ2 ~ = 1.2, 
o~a ~ = 1 . 8 ,  co4 t = - 0 . 2 .  
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Fig. 9. Autocorrelation function of Vw'(1). m ~< 3. o)1 ~ = 1, oJ2 * = 1.2, cos ~ = 1.8. 

In order to check the generality of the above behavior, another set of 
runs was made with ~oI ~ = 1, ~o2 i = 1.2, co~ i = 1.8, and o~(4) = -0 .2 .  The 
results for m ~< 4 and 3 are shown in Figs. 7-9. It appears that the nonlinear 
interactions provided by the presence of the (passive) fourth mode are im- 
portant in producing nonperiodicity. This sheds light on the results reported 
in Ref. 5. In those calculations, it was found that, upon removing the Fourier 
components comprising the fourth harmonic in a set of four nonlinearly 
interacting waves, the system reverted from nonperiodicity to periodicity. 
Nonperiodic solutions could not be found by varying the Rayleigh number 
in the three-wave system. The model calculations indicate that this was due 
to the lack of  important nonlinear couplings rather than the inability of the 
system to produce a fourth bifurcation. 

The fact that the autocorrelation function of Vw(2) decays more slowly 
than those of Vw(1), Vw(3), and Vw(4) in the calculations reported above 
seems related to the fact that there is a more direct link between Vw(1) and 
Vw(3) than there is between either.of these two and Vw(2). In order to test 
this, a fourth bifurcation was produced by increasing ~o4 ~, with oJl~= 1, 
oJ2 ~ = 1.2, and oJa ~ = 1.6. The fourth mode bifurcates at roughly oJ4 ~ = 1.6 
and increases by a factor of  four in magnitude when oJ4 ~ = 1.8. In the latter 
case, all four modes have great variability in cycle length. The autocorrelation 
functions decay quickly toward zero. This is shown by Figs. 10 and 11. This 
computation was done in double precision with the ninth-order scheme. In 
order to check the mixing, the computation was repeated with an integration 
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10-3'L 

Fig. 10. Maxima of the autocorrelation function of Vwr(1). m ~< 4. coz ~ = 1, ~2 ~ = 1.2, 
coat = 1.6, ~o4 t = 1.8. 

domain  four  times longer. [Thus, the domain  was At = 6000 ~ 1000 cycles 
o f  Vw(1).] It  can be seen in Figs. 12 and 13 that  the correlat ion functions mix 
down by an addit ional factor  o f  two. This is determined by compar ing  the 
largest values o f  the correlation functions in their tail regions. The largest 
" ta i l  r eg ion"  values o f  the autocorrela t ion functions for  Vwr(1) and Vwr(2) 
were 8.7 • 10 -3 and 1.0 • 10 -2 for  the short  run. These values were replaced 
by 3.1 x 10 -3 and 5.5 • 10 -a  on the long run. 

Finally, as a check on the effect o f  computa t ion  error, the calculation in 
Figs. 12 and 13 was repeated with a four th-order  scheme. The results are 
displayed in Figs. 14 and 15. Note  that  the correlat ion functions mix down to 
almost  exactly the same level (3.1 • 10 -3 and 5.5 x 10 -3 compared  with 
3.4 • 10 -8 and 4.8 x 10-8). On  the other  hand, the error produced by the 
fourth-order  scheme is a factor  106 larger than that  o f  the ninth-order scheme. 
Thus,  it seems highly unlikely that  the mixing behavior is due to computat ional  
error. 
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Fig. 11. M a x i m a  o f  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  o f  VwT(2). m < 4. oJ1 ~ = 1, co2 ~ = 1.2,  

~oa ~ = 1.6, oJ4 ~ = 1.8. 

Io "  

I0" 

Iff 

Fig. 12. Same  as Fig. 10 but  wi th  integrat ion t ime  four  t imes longer.  



i0-I 

E 

6 

4 

3 

2 

10-2 

8 

6 

4 

3 

Fig. 13. Same as Fig. 11 but with integration time four times longer. 
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Fig. 14. Same as Fig. 12 but with fourth-order scheme (error larger by 106). 
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Fig. 15. Same as Fig. 13 but with fourth-order scheme (error larger by 106)L 

6. D I S C U S S I O N  

It has been shown that stochastic behavior can result through three 
forward bifurcations in a nonlinear, dissipative model system. Whether this 
will actually occur in physical systems is a much more difficult question. 
However, it is useful to discuss the kinds of systems to which these results 
might apply. The main requirement is that the system, when linearized about 
some time-independent "ground state," should have many normal modes 
with complex frequencies. As some external forcing parameter (e.g., Rayleigh 
number) is increased, the imaginary parts of  the various frequencies become 
positive. Of course as soon as one modedevelops a finite strength, the subse- 
quent bifurcation points will be moved. In the model system of this paper, 
there is a one-to-one correspondence between the bifurcations of the nonlinear 
states and those predicted by the linearized problems. However, this is 
probably not crucial to the phenomena discussed. 

Without doubt, the nonlinear couplings between modes are the most 
important factor in the onset of stochastic behavior. These couplings must 
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allow the time dependence of  one mode to modify the time dependence of 
the other modes, and not just their amplitudes. In the case of  traveling waves 
bifurcating on a one-dimensional, translationally invariant background field, 
this requirement boils down to demanding that the wave numbers be rationally 
related. This, in turn, will be satisfied if the system obeys periodic boundary 
conditions. 

The behavior of  the model discussed in this paper raises some interesting 
questions. Can the same sequence of phenomena occur in a system of equa- 
tions derived from the model equations by perturbation expansion in the 
modal strengths ? This would generalize the results somewhat. It could also 
reduce the dimensionality of the phase space to three, which would be inter- 
esting in view of Lorenz's work34~ 

What is the probability distribution of the fluctuations? Ruelle ~11~ has 
attacked the question of the existence of the probability distribution, but 
nothing is known of its nature. 

Finally, and most interesting from the physicist's point of view, do these 
phenomena occur in physical systems ? It is hoped that accurate numerical 
studies of Couette flow and low-Prandtl-number convection presently under- 
way will answer this question for two plausible candidates. 
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